TARGET KERJA OBAT COVID-19: REVIEW

Purwaniati Purwaniati, Aiyi Asnawi

Sari


Corona virus desease 2019 (COVID-19) yang disebabkan Severe acute respiratory syndrome Corona Virus 2 (SARS-CoV-2) telah menjadi wabah global. Hingga saat belum ada obat atau vaksin untuk terapi COVID-19 ini. Upaya penemuan obat baru atau pengujian terhadap obat yang telah ada mendesak untuk dilakukan. Penentuan target kerja obat COVID-19 yang tepat menjadi tantangan tersendiri, karena sebagai virus baru strukturnya belum diketahui secara jelas. Dalam kesempatan ini, kami melakukan sistematik review untuk dapat mengidentifikasi molekul-molekul yang dapat menjadi target kerja obat anti COVID-19. Review ini diawali dengan penelusuran pustaka pada database Pubmed dengan menggunakan kata kunci “SARS-CoV-2 drug target”. Main protease (Mpro), angiotensin converting enzyme 2 (ACE2), protein spike dan RNA-dependent RNA polymerase (RdRp) merupakan protein target yang paling banyak digunakan dalam penelitian.

Kata Kunci


Target Kerja SARS-CoV-2, COVID-19, Virus Corona

Teks Lengkap:

PDF (English)

Referensi


Antoniak, S. et al. 2017. Protease-Activated Receptor 1 Contributes to Angiotensin II-Induced Cardiovascular Remodeling and Inflammation. Cardiology (Switzerland). doi: 10.1159/000452269.

Basit, A., Ali, T. and Rehman, S. U. 2020. Truncated human Angiotensin Converting Enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2020.1768150.

Belouzard, S. et al. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. doi: 10.3390/v4061011.

Cao, Y. et al. 2020. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients B cells. Cell. doi: 10.1016/j.cell.2020.05.025.

Channappanavar, R. and Perlman, S. 2017. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology. doi: 10.1007/s00281-017-0629-x.

Chen, X. et al. 2014. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein and Cell. doi: 10.1007/s13238-014-0026-3.

Chen, Y. et al. 2011. ‘Biochemical and structural insights into the mechanisms of sars coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathogens. doi: 10.1371/journal.ppat.1002294.

Cicerale, S. et al. 2009. Chemistry and health of olive oil phenolics. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408390701856223.

Davies, J. et al. 2004. Quantitative structure-activity relationship modeling of acute toxicity of quaternary alkylammonium sulfobetaines to Daphnia magna. Environmental Toxicology and Chemistry, 23(9), pp. 2111–2115. doi: 10.1897/03-312.

Elmezayen, A. D. et al. 2020. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of biomolecular structure & dynamics. doi: 10.1080/07391102.2020.1758791.

Emameh, R. Z., Nosrati, H. and Taheri, R. A. 2020. Combination of biodata mining and computational modelling in identification and characterization of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Biological Procedures Online. doi: 10.1186/s12575-020-00121-9.

Enmozhi, S. K. et al. 2020. Andrographolide As a Potential Inhibitor of SARS-CoV-2 Main Protease: An In Silico Approach. Journal of biomolecular structure & dynamics. doi: 10.1080/07391102.2020.1760136.

Ferrario, C. M. and Mullick, A. E. 2017. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological Research. doi: 10.1016/j.phrs.2017.05.020.

Fujii, S. and Hitomi, Y. 1981. New synthetic inhibitors of C1r̄, C1 esterase, thrombin, plasmin, kallikrein and trypsin. BBA - Enzymology. doi: 10.1016/0005-2744(81)90023-1.

Gao, Y. et al. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. doi: 10.1126/science.abb7498.

Gheblawi, M. et al. 2020. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation research. doi: 10.1161/CIRCRESAHA.120.317015.

Gimeno, A. et al. (2020) ‘Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug Reposition.’, International journal of molecular sciences, 21(11). doi: 10.3390/ijms21113793.

Gordon, C. J. et al. 2020. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry. doi: 10.1074/jbc.ra120.013679.

Gurung, A. B. et al. 2020. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sciences. Elsevier, 255(May), p. 117831. doi: 10.1016/j.lfs.2020.117831.

Harcourt, B. H. et al. 2004. Identification of Severe Acute Respiratory Syndrome Coronavirus Replicase Products and Characterization of Papain-Like Protease Activity. Journal of Virology. doi: 10.1128/jvi.78.24.13600-13612.2004.

Haschke, M. et al. 2013. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clinical Pharmacokinetics. doi: 10.1007/s40262-013-0072-7.

Hilgenfeld, R. 2014. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS journal. doi: 10.1111/febs.12936.

Hoffmann, M., Schroeder, S., et al. 2020. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrobial agents and chemotherapy. doi: 10.1128/AAC.00754-20.

Hoffmann, M., Kleine-Weber, H., et al. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. doi: 10.1016/j.cell.2020.02.052.

Holshue, M. L. et al. 2020. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine. doi: 10.1056/NEJMoa2001191.

Huang, C. et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. doi: 10.1016/S0140-6736(20)30183-5.

Hudson, C. B. and Beaudette, F. R. 1932. Infection of the cloaca with the virus of infectious bronchitis. Science. doi: 10.1126/science.76.1958.34-a.

Imai, Y. et al. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. doi: 10.1038/nature03712.

Ivanov, K. A. and Ziebuhr, J. 2004. Human Coronavirus 229E Nonstructural Protein 13: Characterization of Duplex-Unwinding, Nucleoside Triphosphatase, and RNA 5′-Triphosphatase Activities. Journal of Virology. doi: 10.1128/jvi.78.14.7833-7838.2004.

Iwata-Yoshikawa, N. et al. 2019. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. Journal of Virology. doi: 10.1128/jvi.01815-18.

Jin, Z., Zhao, Y., et al. 2020. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature structural & molecular biology. doi: 10.1038/s41594-020-0440-6.

Jin, Z., Du, X., et al. 2020. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. Springer US. doi: 10.1038/s41586-020-2223-y.

Joshi, R. S. et al. 2020. Discovery of Potential Multi-Target-Directed Ligands by Targeting Host-specific SARS-CoV-2 Structurally Conserved Main Protease$. Journal of biomolecular structure & dynamics. doi: 10.1080/07391102.2020.1760137.

Khan, A. et al. 2017. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care. doi: 10.1186/s13054-017-1823-x.

Kuo, L., Hurst, K. R. and Masters, P. S. 2007. Exceptional Flexibility in the Sequence Requirements for Coronavirus Small Envelope Protein Function. Journal of Virology. doi: 10.1128/jvi.01577-06.

Kupferschmidt, K. 2020. These drugs don’t target the coronavirus—they target us. Science. doi: 10.1126/science.abc0405.

Li, S. W. et al. 2016. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. International Journal of Molecular Sciences. doi: 10.3390/ijms17050678.

Li, X. et al. 2020. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. Elsevier Ltd, 10(2), pp. 102–108. doi: 10.1016/j.jpha.2020.03.001.

Lu, R. et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. doi: 10.1016/S0140-6736(20)30251-8.

Luk, H. K. H. et al. 2019. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution. doi: 10.1016/j.meegid.2019.03.001.

McBride, R., van Zyl, M. and Fielding, B. C. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses. doi: 10.3390/v6082991.

Meenakshisundaram, B. and Robert, S. R. 2020. Computational Target-Based Drug Repurposing of Elbasvir, an Antiviral Drug Predicted to Bind Multiple SARS-CoV-2 Proteins. chemRxiv. doi: 10.26434/chemrxiv.12084822.v1.

Mirza, M. U. and Froeyen, M. 2020. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2020.04.008.

Morse, J. S. et al. 2020. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem. doi: 10.1002/cbic.202000047.

Nutho, B. et al. 2020. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry. doi: 10.1021/acs.biochem.0c00160.

Okada, M. et al. 2005. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine, 23(17–18), pp. 2269–2272. doi: 10.1016/j.vaccine.2005.01.036.

Oudit, G. Y. et al. 2009. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European Journal of Clinical Investigation. doi: 10.1111/j.1365-2362.2009.02153.x.

Pinto, D. et al. 2020. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv. doi: 10.1101/2020.04.07.023903.

Plewczynski, D. et al. 2007. In silico prediction of SARS protease inhibitors by virtual high throughput screening. Chemical Biology and Drug Design. doi: 10.1111/j.1747-0285.2007.00475.x.

Prajapat, M. et al. 2020. Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology. doi: 10.4103/ijp.IJP_115_20.

Quimque, M. T. J. et al. 2020. Not One, But Five: Virtual Screening-Driven Drug Discovery of SARS-CoV2 Enzyme Inhibitors Targeting Viral Attachment, Replication and Post-Translational Infection Mechanisms. ChemRxiv. doi: 10.26434/chemrxiv.12170424.v1.

Reiner, Ž. et al. 2020. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Archives of Medical Science. doi: 10.5114/aoms.2020.94655.

Rut, W. et al. 2020. Activity profiling of SARS-CoV-2-PLpro protease provides structural framework for anti-COVID-19 drug design. bioRxiv. doi: 10.1101/2020.04.29.068890.

Schoeman, D. and Fielding, B. C. 2019. Coronavirus envelope protein: Current knowledge. Virology Journal. doi: 10.1186/s12985-019-1182-0.

Shamsi, A. et al. 2020. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible therapeutic implication in COVID-19. Bioscience reports, 0(June), pp. 1–8. doi: 10.1042/BSR20201256.

Shum, K. T. and Tanner, J. A. 2008 Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. Chembiochem : a European journal of chemical biology. doi: 10.1002/cbic.200800491.

Simmons, G. et al. 2004. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.0306446101.

Subissi, L. et al. 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.1323705111.

Tsuji, M. 2020. Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease. FEBS open bio. doi: 10.1002/2211-5463.12875.

Umesh et al. 2020. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics. Taylor & Francis, 0(0), pp. 1–9. doi: 10.1080/07391102.2020.1763202.

Venkatagopalan, P. et al. 2015. Coronavirus envelope (E) protein remains at the site of assembly. Virology. doi: 10.1016/j.virol.2015.02.005.

Walls, A. C. et al. 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. doi: 10.1016/j.cell.2020.02.058.

Wan, Y. et al. 2020 Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology. doi: 10.1128/jvi.00127-20.

Wang, M. et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. doi: 10.1038/s41422-020-0282-0.

Wang, M. Y. et al. 2018. A comprehensive in silico method to study the QSTR of the aconitine alkaloids for designing novel drugs. Molecules. doi: 10.3390/molecules23092385.

Wang, Q. M. et al. 1997 A continuous colorimetric assay for rhinovirus-14 3C protease using peptide p-nitroanilides as substrates. Analytical Biochemistry. doi: 10.1006/abio.1997.2315.

Wang, Y. and Liu, L. 2016. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. mBio. doi: 10.1128/mBio.01872-15.

Weiss, S. R. and Leibowitz, J. L. 2011. Coronavirus pathogenesis. 1st edn, Advances in Virus Research. 1st edn. Elsevier Inc. doi: 10.1016/B978-0-12-385885-6.00009-2.

Williams, A. E. and Chambers, R. C. 2014. The mercurial nature of neutrophils: Still an enigma in ARDS?. American Journal of Physiology - Lung Cellular and Molecular Physiology. doi: 10.1152/ajplung.00311.2013.

De Wit, E. et al. 2016. SARS and MERS: Recent insights into emerging coronaviruses. Nature Reviews Microbiology. doi: 10.1038/nrmicro.2016.81.

Wrapp, D. et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. doi: 10.1126/science.aax0902.

Wu, C. et al. .2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. doi: 10.1016/j.apsb.2020.02.008.

Wu, K. et al. 2012. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry. doi: 10.1074/jbc.M111.325803.

Xu, Z. et al. 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. doi: 10.1016/S2213-2600(20)30076-X.

Xue, X. et al. 2007. Production of Authentic SARS-CoV Mpro with Enhanced Activity: Application as a Novel Tag-cleavage Endopeptidase for Protein Overproduction. Journal of Molecular Biology. doi: 10.1016/j.jmb.2006.11.073.

Yamamoto, M. et al. 2016. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome Coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrobial Agents and Chemotherapy. doi: 10.1128/AAC.01043-16.

Yang, H., Bartlam, M. and Rao, Z. 2006. Drug Design Targeting the Main Protease, the Achilles Heel of Coronaviruses’, Current Pharmaceutical Design. doi: 10.2174/138161206779010369.

Yu, L. et al. 2016. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides. doi: 10.1016/j.peptides.2016.09.009.

Yuan, L. et al. 2015. P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. Journal of Biological Chemistry. doi: 10.1074/jbc.M114.619890.

Zhang, H. and Baker, A. 2017. Recombinant human ACE2: Acing out angiotensin II in ARDS therapy. Critical Care. doi: 10.1186/s13054-017-1882-z.

Zhang, L., Lin, D., Sun, X., Curth, U., et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science. doi: 10.1126/science.abb3405.

Zhang, L., Lin, D., Sun, X., Rox, K., et al. 2020. X-ray Structure of Main Protease of the Novel Coronavirus SARS-CoV-2 Enables Design of α-Ketoamide Inhibitors. bioRxiv. doi: 10.1101/2020.02.17.952879.

Zhou, P. et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. Springer US, 579(7798), pp. 270–273. doi: 10.1038/s41586-020-2012-7.

Zhou, Y. et al. 2010. A Single Asparagine-Linked Glycosylation Site of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Facilitates Inhibition by Mannose-Binding Lectin through Multiple Mechanisms. Journal of Virology. doi: 10.1128/jvi.00554-10.




DOI: http://dx.doi.org/10.47653/farm.v7i2.172

Refbacks

  • Saat ini tidak ada refbacks.


Creative Commons License
Jurnal Farmagazine is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM)

Alamat Redaksi: Jln. KH Syekh Nawawi (Raya Pemda) KM. No. 4, Mata Gara, Kec. Tigaraksa, Tangerang, Banten 15720

Email: lppm@stfm.ac.id

Indexed By

  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel 

 

Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  DRJI Indexed Journal  Hasil gambar untuk gambar template artikel   Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel  Hasil gambar untuk gambar template artikel